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Algorithms of the transient processes arising in a ground in which solar energy is accumulated with the use
of individual vertical heat exchangers when the work of solar collectors is stopped or resumed are proposed.
The results of solving problems on the nonstationary heat conduction in semibounded bodies by the method
proposed were compared with classical results.

Introduction. The accumulation of solar energy in a ground in a mild season for the purpose of its use in a
cold season for municipal heat supply is a promising direction of nontraditional power engineering. The dynamics of
accumulation of heat in a ground and its extraction with the use of an intermediate heat-transfer agent (water as a
rule) heated by solar collectors or cooled in thermocompressors was simulated in [1–3]. In the work of solar collectors,
there inevitably arise interruptions, which leads to a sharp change in the conditions under which the thermal processes
proceed in a ground. These features were taken into account in the first approximation in the above-indicated investi-
gations. In the present work, the transient thermal processes in a ground arising as a result of termination and resump-
tion of the work of solar collectors are analyzed in more detail.

Termination of Heat Accumulation. At the end of a light day, the intensity of solar radiation decreases and
a pump pumping water through a system of ground heat exchangers turns off. The pump generates a head expended
for the formation of a heat-transfer-agent flow and for overcoming of the hydraulic resistance of a closed circulation
loop. When the pump turns off, there arise damped oscillations of the head and of the heat-transfer-agent flow initiated
by it. The frequency of change in the velocity of the oscillating liquid is determined by the expression

ωhyd C √ g
H

 , (1)

where g = 9.81 m/sec2 and H is the head formed by the pump. The quantity ωhyd is closely related to the frequency
of oscillations ωh of the heat-flux density q0 determined by the Newton formula

q0 (t) = α (t) (Tw − Twall) 
Rwall

R0
 , (2)

and, since α(t) is determined by the modulus of the velocity of the heat-transfer agent in a heat exchanger, the fre-
quency of change in q0(t) and the period of temperature oscillations τh will be equal to

ωh C 2ωhyd ,   τh = 
2π
ωh

 . (3)

The arising thermal waves attenuate on passage through a medium with a thermal resistance. The distance at
which the temperature oscillations are decreased by e = 2.71 times is determined from the formula [4]

l

2π
 = √amτh

π
 . (4)
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For for ground masses with am D 10−6 m2/sec and a circulation loop of length D300 m, the value of the right side of
(4) is 0.88⋅10−3 m (τh D 2.5 sec) at a pump head H D 0.02⋅300 = 6 m. Thus, the change to the value of q0 = 0 (end
of the damped wave process) will lead to a marked transformation of the temperature profile in a ground at a small
distance from the wall of a heat exchanger.

The temperature distribution in a ground mass in which heat is accumulated is defined by the dependences
[1–3]

T − Tm

T0 − Tm
 = 










(1 − η)3 (1 + 3η − Amη) ,

(1 − η)Am ,
     

Am ≤ 4 ;

Am > 4 ,

Am = 
q0 (R − R0)
λm (T0 − Tm)

 ;   η = 
r − R0

R − R0
 . (5)

The first formula (5) is transformed, at q0 = 0 (Am = 0), into

T − Tm

T0 − Tm
 = (1 − η)3 (1 + 3η) . (6)

Because of the intensive damping of heat perturbations, the temperature profile corresponding to the change
from the "pumping" of heat (q0 > 0) to its natural drift (q0 = 0) cannot substantially differ in structure from profiles
(5). Formula (6) can be used in the approximate form

T − Tm

T0 − Tm
 = (1 − η)B (1 + Bη) , (7)

which satisfies the condition q0 = 0 at any finite value of the parameter B. In the process of heat accumulation,
Am >> 10. If B = Am, the difference between the fullnesses of profiles (7) and the initial profile (5) is equal to

∆ = Bη (1 − η)B . (8)

Investigation of (8) to find an extremum gives

ηext = 
1

1 + B
 . (9)

The second derivative of (8) with respect to η is negative at η = ηext; therefore, ∆(ηext) = ∆ext = ∆max. As follows
from (9), ηext < 0.1 at B ≥ 10, which corresponds to the above-described notions of the zone where the temperature
profile is mainly transformed. We will calculate the change from the accumulation of heat to its drift in the following
order. Profile (5) is transformed into profile (7) during several periods of damped oscillations of the quantity q0. The
value of B(td,b) is calculated by the integral condition of accumulated-energy conservation at F = idem (F = T0, R).

Natural Drift of Heat. At t > td,b, profile (7) is diffusively transformed, with the result that B(t) changes from
B(td,b) to B(td,e). The limiting minimum value of the parameter B is equal to Bmin = 3 (see formulas (6) and (7)). The
dynamics of the determination process is dictated by the fundamental heat-conduction equation and the integral energy
equation. Using methods described in [1–3], we obtain

dT0

dt
 = − am 

T0 − Tm

R
2

 B (B + 1) ,   
dR

dt
 = 6 

am

R
 ,

Ei = 2πρmcm (T0 − Tm) 
R

2

(B + 2) (B + 3)
 

3Z + 16Z

(B + 4)



 = const .

(10)
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Expressions (10) were obtained assuming that R >> R0, which represents the facts. The system of equations (10) is
closed and the changes in T0(t), R(t), and B(t) during the natural drift of heat can be determined by the initial condi-
tions at the instant of time td,b.

Change from Drift to Accumulation. This stage begins when a pump turns on and a flow of an intermediate
heat-transfer agent arises. Since the heat-transfer agent–ground massive system cannot be in complete heat equilibrium,
α0 and, accordingly, q0 increase sharply when the heat-transfer agent begins to move. As the heat-transfer agent,
cooled in the process of drift, is displaced by a heat-transfer agent heated by solar collectors, the regime of operation
of a setup approaches the calculated one. The time of establishment of the calculated regime τp can be determined in
the first approximation on the assumption that the heat-transfer agent moves in a tube system in a piston regime:

τp = L
vw

 , (11)

where L is the length of the contact surface of a heat exchanger with the ground and vw is the velocity of travel of
the heat-transfer agent. Thus, it is assumed that (a) profile (7) at B = B(td,e) is transformed rapidly into profile (5) at
F = idem (F = Ei, T0, R) and (b) for the time τp, the parameters of the heat-transfer agent become equal to the cal-
culated ones determined by the work of solar collectors. The indications of the establishment of this regime are defi-
nite values of q0 or T0 attained for the time τp. The first parameter is determined more easily than the second one
when the characteristics of solar collectors and the intensity of solar radiation are known. Subproblem (b) is solved
within the framework of the complete system of equations (1)–(3) at the initial conditions determined by the solution
of subproblem (a).

This is an exhaustive description of the transient processes. Within the framework of the above-described no-
tions we have developed software for solving problems on the transient processes determining the change from the ac-
cumulation of heat to its natural drift and, conversely, from the heat drift to the "pumping" of energy.

Analysis of Solutions. The above-described problems can be solved only by a numerical method. Therefore,
we will consider their features using concrete examples. Let heat be accumulated in a ground (ρm = 1.84⋅103 kg/m3,
cm = 1.15 ⋅103 J/(kg⋅K), λm = 1.42 W/(m⋅K), Tm = 10oC) with the use of a vertical coaxial heat exchanger (R0 =
0.054 m, Rwall = 0.050 m, Rin = 0.040 m, Z = 50 m, λwall = 17.5 W/(m⋅K)), in which water heated by solar collec-
tors (Tw < 60oC) circulates (Gw = 5.0 kg/sec). To ensure that the changes in the functions studied were clearly defined,
the initial density of a heat flow is assumed to be high (q0 = 1000 W/m2). In the case where heat is accumulated by
an individual heat exchanger, the radius of heat propagation R and the parameter Am increase rapidly. As was shown
in [1–3], at Am D 300 in typical grounds, the thermal head formed ∆T = (Tw − Tm) D 40 K is depleted practically en-
tirely in the neighborhood of R D 1 m adjacent to the heat exchanger. Therefore, the further pumping of heat into the
ground leads to an indefinitely large increase in the accumulation region (R → ∞) and to the accumulation of energy
in it; the potential of this energy is equal to the initial potential of the ground Tm. Because of this, it is necessary to
control the work of an individual heat exchanger, e.g., by restriction of the heat-propagation radius, which is taken, in
the example considered, to be equal to Re = 5.0 m.

The changes in the main parameters during the first eight hours (interval of work of a solar collector) of heat
accumulation are presented in Fig. 1a. It is seen that R(t) and Am(t) increase very rapidly in the initial period. After
te = 1.47 h from the beginning of work, these quantities reached the values R = 5.006 and Am = 111.4. The tempera-
ture T0 changed from 10 to 40.84oC and the temperature Tw changed from 12.23 to 41.67oC. When R = 5.006 m was
attained, heat was pumped in the regime R = Re = const and the density of the heat flow q0 was decreased, which
caused a decrease in Am. The temperature T0 increased insignificantly for 0.5 h after te and then decreased. The finite
values of the parameters were as follows at the end of the work of the solar collectors (8 h): Tw = 21.35oC, Twall =
21.34oC, T0 = 21.31oC, Am = 30.19, q0 = 97.97 W/m2, and Ei = 0.251⋅109 J. The change in T0 becomes more smooth
when the initial value of q0 decreases.

When the accumulation of heat is changed to its natural drift, the initial value of B = 45.196. The graphs of
change in the main functions B(t), T0(t), and R(t) during the remaining 16 h before the beginning of the next period
of work of solar collectors are given in Fig. 6. The finite parameters of the drift are as follows: T0 = 12.77oC, B =
21.46, and R = 5.061 m. The radius of heat propagation was increased only by 0.055 m. However, the number of
such noncontrolled drifts will be 180 in the process of heat accumulation plus 180 drifts in the process of discharge.
It should be noted that B did not reach the limiting value Bmin = 3 for the period of heat drift.
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The resumption of heat pumping transformed the temperature distribution (7) into distribution (5) with Am =
13.324. During τp = 29 sec (see (11)), the value of R = 5.061 m remained practically unchanged and, at q0 = 322.5
W/m2, solution of problem (b) led to the following results: T0 = 33.76oC and Am = 47.86. The subsequent pumping
of heat for 8 h at R = 5.061 m = const is illustrated by the graph of change in the main functions (see Fig. 1c).

The above-described algorithm can be easily extended to the whole accumulation season. Control of energy
accumulation allows one to substantially decrease the radius of heat propagation. Despite the fact that the radius R
increases by a comparatively small value for 16 h of one drift (∆R D 0.1 m), this radius will increase by a large
value (∆R D 10–20 m) during an accumulation season including 180 interruptions. To prevent an increase in the
heat region, it is necessary to control the pumping of energy for the 24 h in a day. An example of such control
performed with the aim of limiting R = 5.0 m is presented in Fig. 1d. To realize a continuous heat accumulation,
it is necessary to use twenty-four-hour accumulators. Analysis of the regime considered has shown that 80–85% of
the twenty-four hours’ energy is pumped for the time of active work of the solar collectors (see Fig. 1d). The re-
sults of calculations point to the fact that the volume of a twenty-four-hour water accumulator with a temperature
75oC can be about 0.167 m3/kW.

Comparison of the Integral Method with a Classical Method. We will supplement the comparison of the
solutions of the problems on the nonstationary heat conduction of spatially nonbounded bodies by classical methods
and the above-described integral method, presented in [1], with two known problems on heating of a semibounded
body [5]:

(a) with a graduated increase in the temperature of the face Tm to T0 and subsequent maintenance of it at this
level;

(b) in the case of sudden heat supply to the face and q0 = const.
When problem (a) is solved, both approaches give identical formulas:

Fig. 1. Change in the parameters F (F = A, q0, T0, Ei, R, B) in the process of
heat accumulation (a), natural heat drift (b), resumption of heat accumulation
(q0(te.d) = 322.5 W/m2) (c), and continuous heat accumulation (d): 1) A; 2)
q0; 3) T0; 4) Ei; 5) R; 6) B. q0, 10 W/m2; T0, oC; Ei, 107 J; R, m.
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q0 (t, 0) = 
λm (T0 − Tm)
√kamt

 , (12)

where k = π (classical solution) and k = 3.33 (integral method). The temperature distributions T(t, x) are practically
identical, except for the temperature distributions in the region η = x ⁄ X > 0.6, where the classical solution should give
a somewhat fuller profile.

The solution of problem (b), obtained by the integral method at Am > 4,

dT0

dt
 = 

am (T0 − Tm)

q0
2
t
2

 






ρmcì (T0 − Tm) − 

q0
2
t

λm (T0 − Tm)








2

 ,

(13)

is not reduced in all probability to quadratures. At Am >>1, expression (13) becomes simper and is reduced to the ap-
proximate expression

T0 − Tm = 
q0

λm
 √amt  ;

(14)

the numerical coefficient on the right side of (14) is equal to unity, and in the case of the exact (classical) solution,
to 2/√π  = 1.128 [5].

Conclusions. More exact algorithms (as compared to the algorithms presented in [1–3]) of the transient proc-
esses arising in a ground in which solar energy is accumulated as a result of the termination and resumption of the
work of solar collectors have been developed. The number of problems on nonstationary heat conduction in unbounded
media which can be solved analytically is very small. Therefore, estimation of the accuracy of determining the ther-
mophysical parameters (λ, ρ, c) of actual ground masses allows the conclusion that the method proposed can be con-
sidered as wholly satisfactory.

NOTATION

A, parameter; a, thermal diffusivity, m2/sec; c, specific heat capacity, J/(kg⋅K); Ei, energy, J; G, flow rate of
an intermediate heat-transfer agent, kg/sec; g, free fall acceleration, m/sec2; H, head formed by a pump, m; k, coeffi-
cient; L, length of the contact of a heat-exchange surface with a ground, m; l, length of a thermal wave, m; q, density
of a heat flow, W/m2; R, radius of the heat propagation, m; R0, outer radius of a heat-exchanger tube, m; r, x, coor-
dinates, m; T, temperature, oC; t, times, sec; v, velocity of a flow, m/sec; Z, working height of a heat exchanger, m;
X, characteristic length, m; α, heat-transfer coefficient, W/(m2⋅K); ∆, difference between values; η, dimensionless co-
ordinate; λ, heat-conductivity coefficient, W/(m⋅K); ρ, density, kg/m3; τ, interval, sec; ω, frequency, rad/sec. Sub-
scripts: w, water; in, inner; hyd, hydraulic; d, drift; e, end; m, mass; b, beginning; p, piston; wall, wall; h, heat; ext,
extremum; max, maximum; min, minimum.
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